MEMORY CMOS

2 M × 8 BITS FAST PAGE MODE DYNAMIC RAM

MB81V17800A-60/60L/-70/70L

CMOS 2,097,152 × 8 BITS Fast Page Mode Dynamic RAM

■ DESCRIPTION

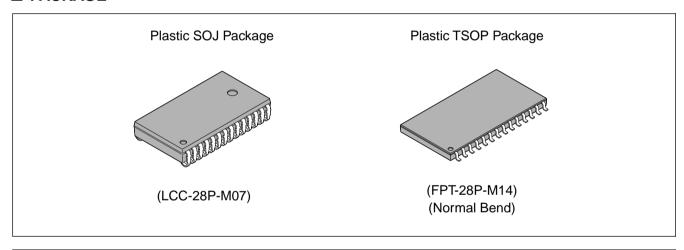
The Fujitsu MB81V17800A is a fully decoded CMOS Dynamic RAM (DRAM) that contains 16,777,216 memory cells accessible in 8-bit increments. The MB81V17800A features a "fast page" mode of operation whereby high-speed random access of up to 1,024-bits of data within the same row can be selected. The MB81V17800A DRAM is ideally suited for mainframe, buffers, hand-held computers video imaging equipment, and other memory applications where very low power dissipation and high bandwidth are basic requirements of the design. Since the standby current of the MB81V17800A is very small, the device can be used as a non-volatile memory in equipment that uses batteries for primary and/or auxiliary power.

The MB81V17800A is fabricated using silicon gate CMOS and Fujitsu's advanced four-layer polysilicon and two-layer aluminum process. This process, coupled with advanced stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB81V17800A are not critical and all inputs are LVTTL compatible.

■ PRODUCT LINE & FEATURES

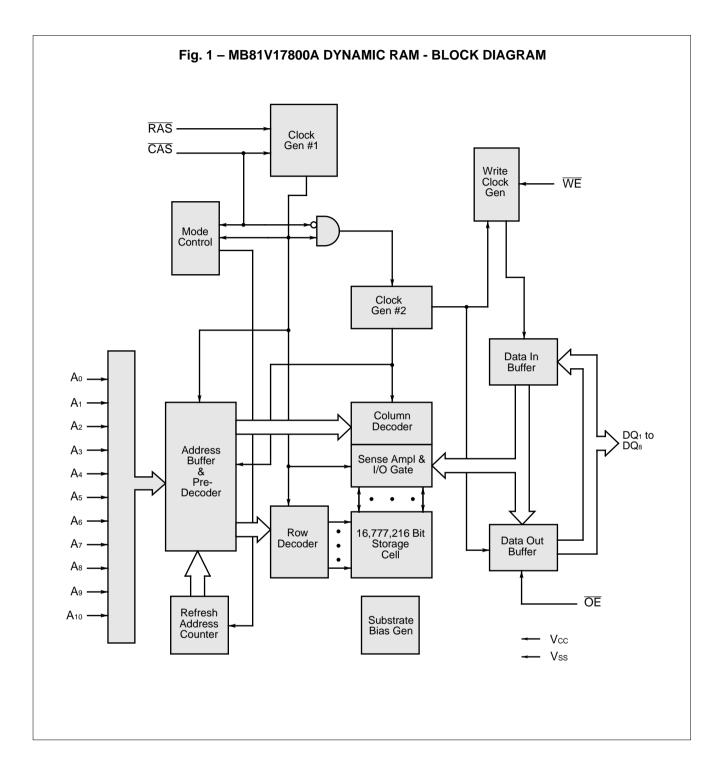
	Paramete			MB81V	17800A		
	Paramete		-60	-60L	-70	-70L	
RAS Access T	RAS Access Time			max.	70 ns	max.	
Random Cycle	andom Cycle Time			s min.	130 n	s min.	
Address Acce	dress Access Time			max.	35 ns max.		
CAS Access T	ime		15 ns	max.	17 ns	max.	
Fast Page Mo	de Cycle Tim	е	40 ns	s min.	45 ns	s min.	
Law Dawar	Operating Current		432 m\	N max.	396 m\	W max.	
Low Power Dissipation	Standby LVTTL level		3.6 mW max.	3.6 mW max.	3.6 mW max.	3.6 mW max.	
	Current	CMOS level	1.8 mW max.	0.54 mW max.	1.8 mW max.	0.54 mW max.	

- 2,097,152 words × 8 bits organization
- Silicon gate, CMOS, Advanced Capacitor Cell
- All input and output are LVTTL compatible
- 2,048 refresh cycles every 32.8 ms
- · Self refresh function
- Standard and low power versions
- Early write or OE controlled write capability
- RAS-only, CAS-before-RAS, or Hidden Refresh
- Fast Page Mode, Read-Modify-Write capability
- On chip substrate bias generator for high performance


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)

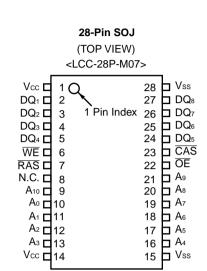
Parameter	Symbol	Value	Unit
Voltage at Any Pin Relative to Vss	VIN, VOUT	-0.5 to +4.6	V
Voltage of Vcc Supply Relative to Vss	Vcc	-0.5 to +4.6	V
Power Dissipation	Po	1.0	W
Short Circuit Output Current	_	±50	mA
Operating Temperature	Торе	0 to +70	°C
Storage Temperature	Тѕтс	-55 to +125	°C


WARNING: Permanent device damage may occur if the above **Absolute Maximum Ratings** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

■ PACKAGE

Package and Ordering Information

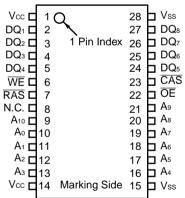
- 28-pin plastic (400mil) SOJ, order as MB81V17800A-xxPJ
- 28-pin plastic (400mil) TSOP-II with normal bend leads, order as MB81V17800A-xxPFTN, MB81V17800A-xxLPFTN (Low Power)



■ CAPACITANCE

 $(T_A = 25^{\circ}C, f = 1MHz)$

Parameter	Symbol	Max.	Unit
Input Capacitance, Ao to A10	C _{IN1}	5	pF
Input Capacitance, RAS, CAS, WE, OE	C _{IN2}	5	pF
Input/Output Capacitance, DQ1 to DQ8	Сра	7	pF


■ PIN ASSIGNMENTS AND DESCRIPTIONS

Designator	Function
A ₀ to A ₁₀	Address inputs row : A ₀ to A ₁₀ column : A ₀ to A ₉ refresh : A ₀ to A ₁₀
RAS	Row address strobe
CAS	Column address strobe
WE	Write enable
ŌĒ	Output enable
DQ ₁ to DQ ₈	Data Input/Output
Vcc	+3.3 volt power supply
Vss	Circuit ground

28-Pin TSOP

(TOP VIEW) <Normal Bend: FPT-28P-M14>

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min.	Тур.	Max.	Unit	Ambient Operating Temp.
Supply Voltage	*1	Vcc	3.0	3.3	3.6	V	
Supply vollage	ı	Vss	0	0	0	V	0°C to + 70°C
Input High Voltage, all inputs	*1	ViH	2.0		Vcc+0.3	V	
Input Low Voltage, all inputs*	*1	VIL	-3.0	_	0.8	V	

^{*:} Undershoots of up to -2.0 volts with a pulse width not exceeding 20 ns are acceptable.

■ FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty-one input bits are required to decode any eight of 16,777,216 cell addresses in the memory matrix. Since only eleven address bits (A_0 to A_{10}) are available, the row and column inputs are separately strobed by \overline{RAS} and \overline{CAS} as shown in Figure 1. First, eleven row address bits are input on pins A_0 -through- A_{10} and latched with the row address strobe (\overline{RAS}) then, ten column address bits are input and latched with the column address strobe (\overline{CAS}). Both row and column addresses must be stable on or before the falling edge of \overline{RAS} and \overline{CAS} , respectively. The address latches are of the flow-through type; thus, address information appearing after transfer (min) + tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of \overline{WE} . When \overline{WE} is active Low, a write cycle is initiated; when \overline{WE} is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of three basic ways-an early write cycle, an \overline{OE} (delayed) write cycle, and a read-modify-write cycle. The falling edge of \overline{WE} or \overline{CAS} , whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data (DQ_1 to DQ_8) is strobed by \overline{CAS} and the setup/hold times are referenced to \overline{CAS} because \overline{WE} goes Low before \overline{CAS} . In a delayed write or a read-modify-write cycle, \overline{WE} goes Low after \overline{CAS} ; thus, input data is strobed by \overline{WE} and all setup/hold times are referenced to the write-enable signal.

DATA OUTPUT

The three-state buffers are LVTTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

trac: from the falling edge of RAS when tred (max) is satisfied. tcac: the falling edge of CAS when tred is greater than tred (max).

 t_{AA} : from column address input when t_{RAD} is greater than t_{RAD} (max).

toea: from the falling edge of \overline{OE} when \overline{OE} is brought Low after trac, tcac, or taa.

The data remains valid until either $\overline{\text{CAS}}$ or $\overline{\text{OE}}$ returns to a High logic level. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

FAST PAGE MODE OF OPERATION

The fast page mode of operation provides faster memory access and lower power dissipation. The fast page mode is implemented by keeping the same row address and strobing in successive column addresses. To satisfy these conditions, \overline{RAS} is held Low for all contiguous memory cycles in which row addresses are common. For each fast page of memory, any of $1,024 \times 8$ -bits can be accessed and, when multiple MB81V17800As are used, \overline{CAS} is decoded to select the desired memory fast page. Fast page mode operations need not be addressed sequentially and combinations of read, write, and/or read-modify-write cycles are permitted.

■ DC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Note 3

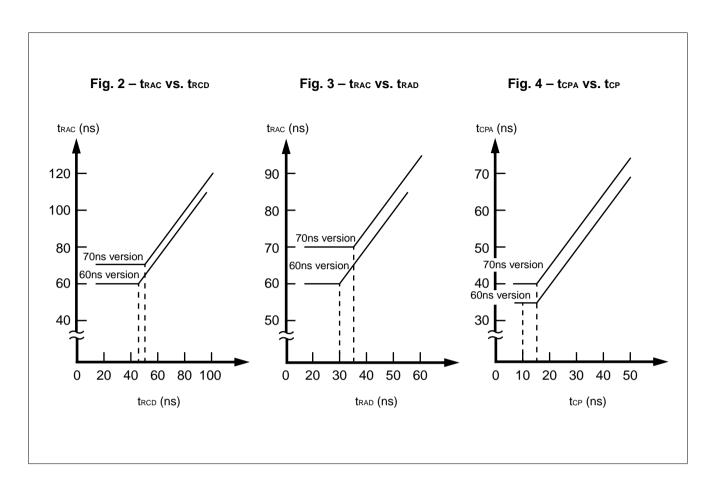
							Value		
Parameter	Notes		Symbol	Condition	Min	Тур.	M	ах.	Unit
					IVIIII.	ιyp.	Std power	Low power	
Output high voltage	е		Vон	Iон = −2 mA	2.4	_	_	_	V
Output low voltage	!		Vol	IoL = +2 mA	_	_	0.4	0.4	\ \
Input leakage current (Any Input)		lı(L)	$\begin{array}{l} 0 \text{ V} \leq \text{V}_{\text{IN}} \leq 3.6 \text{ V}; \\ 3.0 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}; \\ \text{Vss} = 0 \text{ V}; \text{ All other} \\ \text{pins under test} = 0 \text{ V} \end{array}$	-10	_	10	10	μА	
Output Leakage Current			I _{DQ(L)}	0 V≤ V _{OUT} ≤ 3.6 V; Data out disabled	-10	_	10	10	
Operating Current (Average Power	*2	MB81V17800A -60/60L	- Icc1	RAS & CAS cycling;			120	120	mA
Supply Current)		MB81V17800A -70/70L	ICC	trc = min			110	110	11174
Standby Current		LVTTL level	lass	$\overline{RAS} = \overline{CAS} = V_{IH}$			1.0	1.0	mA
(Power Supply Current)		CMOS level	lcc2	$\overline{RAS} = \overline{CAS} \ge V_{CC}$ - 0.2 V			500	150	μА
Refresh Current #1 (Average Power Supply Current)	*2	MB81V17800A -60/60L		CAS = VIH, RAS			120	120	
	2	MB81V17800A -70/70L	- Іссз	cycling; trc = min	_		110	110	mA
Fast Page Mode	MB81	MB81V17800A -60/60L	- Icc4	RAS = VIL, CAS			120	120	m^
Current	^2	*2 MB81V17800A -70/70L		cycling; tpc = min	_		110	110	mA
Refresh Current #2 (Average	***	MB81V17800A -60/60L		RAS cycling;			120	120	
Power Supply Current)	*2	MB81V17800A -70/70L	- Iccs	CAS-before-RAS; trc = min	_	_	110	110	mA
Battery Back Up Current (Average	*2	MB81V17800A -60/70	le	$\begin{tabular}{ll} \hline RAS \ cycling; \\ \hline CAS-before-RAS; \\ t_{RC} = 16 \ \mu s \\ t_{RAS} = min \ to \ 300 \ ns \\ V_{IH} \ge V_{CC} -0.2 \ V, \\ V_{IL} \le 0.2 \ V \\ \hline \end{tabular}$	_	_	1000	_	- μΑ
Power Supply Current)	~2	MB81V17800A -60L/70L	- Icc6	$\begin{tabular}{l l} \hline RAS & cycling; \\ \hline CAS-before-RAS; \\ t_{RC} = 62.5 \ \mu s \\ t_{RAS} = min \ to \ 300 \ ns \\ V_{IH} \ge V_{CC} -0.2 \ V, \\ V_{IL} \le 0.2 \ V \\ \hline \end{tabular}$			_	300	
Refresh Current #3 (Average Power Supply		MB81V17800A -60/60L MB81V17800A	- Icce	RAS = V _{IL} , CAS = V _{IL} Self refresh;	_	_	1000	250	μΑ
Current)		-70/70L		2311 1011 3011,					

To Top / Lineup / Index MB81V17800A-60/60L/-70/70L

■ AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No.	Parameter	Notes	Symbol	MB81V178	00A-60/60L	MB81V178	00A-70/70L	Unit
NO.	Parameter	notes	Symbol	Min.	Max.	Min.	Max.	Unit
1	Time Between Befreeh	Std power	4	_	32.8	_	32.8	ma
1	Time Between Refresh	Low power	t ref	_	128	_	128	ms
2	Random Read/Write Cycle Time)	t RC	110	_	130	_	ns
3	Read-Modify-Write Cycle Time		trwc	150	_	174	_	ns
4	Access Time from RAS	*6,9	t rac	_	60	_	70	ns
5	Access Time from CAS	*7,9	t cac	_	15	_	17	ns
6	Column Address Access Time	*8,9	t AA	_	30	_	35	ns
7	Output Hold Time		tон	3	_	3	_	ns
8	Output Buffer Turn On Delay Tin	ne	ton	0	_	0	_	ns
9	Output Buffer Turn Off Delay Time	*10	toff	_	15	_	17	ns
10	Transition Time		t⊤	3	50	3	50	ns
11	RAS Precharge Time		t RP	40	_	50	_	ns
12	RAS Pulse Width		t ras	60	100000	70	100000	ns
13	RAS Hold Time		t RSH	15	_	17	_	ns
14	CAS to RAS Precharge Time		t CRP	5	_	5	_	ns
15	RAS to CAS Delay Time	*11,12	t RCD	20	45	20	53	ns
16	CAS Pulse Width		t cas	15	_	17	_	ns
17	CAS Hold Time		tсsн	60	_	70	_	ns
18	CAS Precharge Time (Normal)	*19	t CPN	10	_	10	_	ns
19	Row Address Set Up Time		tasr	0	_	0	_	ns
20	Row Address Hold Time		t rah	10	_	10	_	ns
21	Column Address Set Up Time		tasc	0	_	0	_	ns
22	Column Address Hold Time		t cah	15	_	15	_	ns
23	Column Address Hold Time from	n RAS	t ar	35	_	35	_	ns
24	RAS to Column Address Delay Time	*13	t rad	15	30	15	35	ns
25	Column Address to RAS Lead T	ime	t ral	30	_	35	_	ns
26	Column Address to CAS Lead T	ime	t CAL	30	_	35	_	ns
27	Read Command Set Up Time		trcs	0	_	0	_	ns
28	Read Command Hold Time Referenced to RAS	*14	t rrh	0	_	0	_	ns
29	Read Command Hold Time Referenced to CAS	*14	t RCH	0	_	0	_	ns
30	Write Command Set Up Time	*15,20	twcs	0	_	0	_	ns
31	Write Command Hold Time		t wcH	15	_	15	_	ns

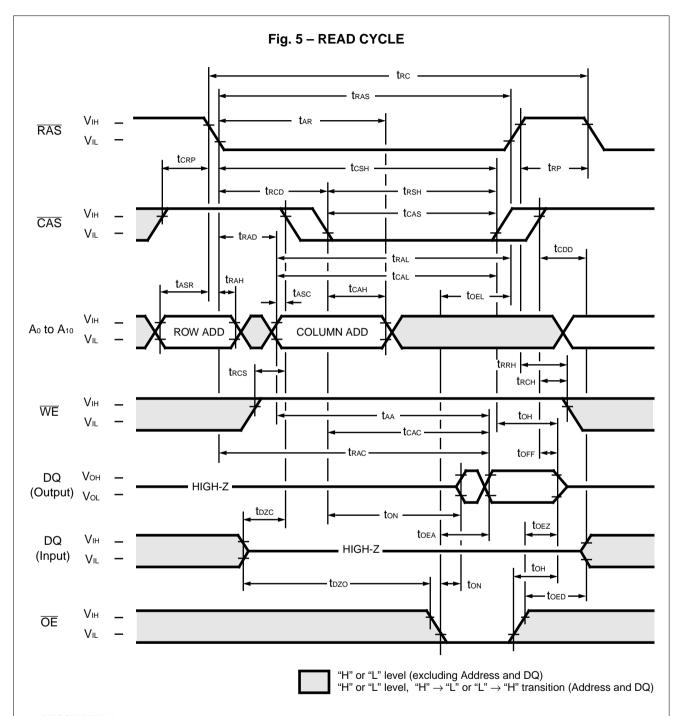

■ AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

Na	Poromotor Notes	Symbol	MB81V178	00A-60/60L	MB81V178	00A-70/70L	l lmi4
No.	Parameter Notes	Symbol	Min.	Max.	Min.	Max.	Unit
32	Write Hold Time from RAS	twcr	35	_	35	_	ns
33	WE Pulse Width	t wp	15	_	15	_	ns
34	Write Command to RAS Lead Time	t RWL	15	_	17	_	ns
35	Write Command to CAS Lead Time	t cwL	15	_	17	_	ns
36	DIN Set Up Time	t DS	0	_	0	_	ns
37	DIN Hold Time	t DH	15	_	15	_	ns
38	Data Hold Time from RAS	t dhr	35		35		ns
39	RAS to WE Delay Time *20	trwd	80	_	92	_	ns
40	CAS to WE Delay Time *20	t cwd	35	_	39	_	ns
41	Column Address to WE Lead Time *20	t awd	50	_	57	_	ns
42	RAS Precharge Time to CAS Active Time (Refresh cycles)	t RPC	5	_	5	_	ns
43	CAS Set Up Time for CAS-before-RAS Refresh	tcsr	0	_	0	_	ns
44	CAS Hold Time for CAS-before-RAS Refresh	t chr	10	_	12	_	ns
45	Access Time from OE *9	t oea	_	15	_	17	ns
46	Output Buffer Turn Off Delay from OE *10	toez	_	15	_	17	ns
47	OE to RAS Lead Time for Valid Data	toel	10	_	10	_	ns
48	OE Hold Time Referenced to *16	tоен	5	_	5	_	ns
49	OE to Data In Delay Time	toed	15	_	17	_	ns
50	CAS to Data In Delay Time	tcdd	15	_	17	_	ns
51	DIN to CAS Delay Time *17	t dzc	0	_	0	_	ns
52	DIN to OE Delay Time *17	t dzo	0	_	0	_	ns
60	Fast Page Mode RAS Pulse Width	t rasp	_	100000	_	100000	ns
61	Fast Page Mode Read/Write Cycle Time	t PC	40	_	45	_	ns
62	Fast Page Mode Read-Modify-Write Cycle Time	t PRWC	80	_	89	_	ns
63	Access Time from CAS Precharge *9,18	t CPA	_	35	_	40	ns
64	Fast Page Mode CAS Precharge Time	t CP	10	_	10	_	ns
65	Fast Page Mode RAS Hold Time from CAS Precharge	t RHCP	35	_	40	_	ns
66	Fast Page Mode CAS Precharge to WE Delay Time	t CPWD	55	_	62	_	ns

Notes: *1. Referenced to Vss.

- *2. Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open. Icc depends on the number of address change as $\overline{RAS} = V_{IL}$, $\overline{CAS} = V_{IH}$ and $V_{IL} > -0.3 \text{ V}$. Icc1, Icc3, Icc4 and Icc5 are specified at one time of address change during $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$. Icc2 is specified during $\overline{RAS} = V_{IH}$ and $V_{IL} > -0.3 \text{ V}$. Icc6 is measured on condition that all address signals are fixed steady state.
- *3. An initial pause (RAS = CAS = ViH) of 200 μs is required after power-up followed by any eight RAS-only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS-before-RAS initialization cycles instead of 8 RAS cycles are required.
- *4. AC characteristics assume $t_T = 5$ ns.
- *5. Input voltage levels are 0V and 3.0V, and input reference levels are V_{IH}(min) and V_{IL}(max) for measuring timing of input signals. Also, the transition time (t_T) is measured between V_{IH}(min) and V_{IL}(max). The output reference levels are V_{OH} = 2.0 V and V_{OL} = 0.8 V.
- *6. Assumes that tRCD ≤ tRCD (max), tRAD ≤ tRAD (max). If tRCD is greater than the maximum recommended value shown in this table, tRAC will be increased by the amount that tRCD exceeds the value shown. Refer to Fig.2 and 3.
- *7. If $trcd \ge trcd$ (max), $trad \ge trad$ (max), and $tasc \ge taa$ tcac $t\tau$, access time is tcac.
- *8. If trad \geq trad (max) and tasc \leq taa tcac tt, access time is taa.
- *9. Measured with a load equivalent to two TTL loads and 100 pF.
- *10. toff and toez is specified that output buffer change to high-impedance state.
- *11. Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, access time is controlled exclusively by tCAC or tAA.
- *12. t_{RCD} (min) = t_{RAH} (min) + 2 t_{T} + t_{ASC} (min).
- *13. Operation within the trad (max) limit ensures that trac (max) can be met. trad (max) is specified as a reference point only; if trad is greater than the specified trad (max) limit, access time is controlled exclusively by trac or trad.
- *14. Either trrh or trch must be satisfied for a read cycle.
- *15. twcs is specified as a reference point only. If twcs ≥ twcs (min) the data output pin will remain High-Z state through entire cycle.
- *16. Assumes that twcs < twcs (min).
- *17. Either tozc or tozo must be satisfied.
- *18. tcpa is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tcp is long, tcpa is longer than tcpa (max).
- *19. Assumes that CAS-before-RAS refresh.
- *20. twcs, tcwd, trwd, tawd and tcpwd are not restrictive operating parameters. They are included in the data sheet as electrical characteristic only. If twcs ≥ twcs (min), the cycle is an early write cycle and Dout pin will maintain high-impedance state throughout the entire cycle. If tcwd ≥ tcwd (min), trwd ≥ trwd (min), trwd ≥ trwd (min) and tcpwd ≥ tcpwd (min), the cycle is a read-modify-write cycle and data from the selected cell will appear at the Dout pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin, and write operation can be executed by satisfying trwL, tcwL, and traL specifications.



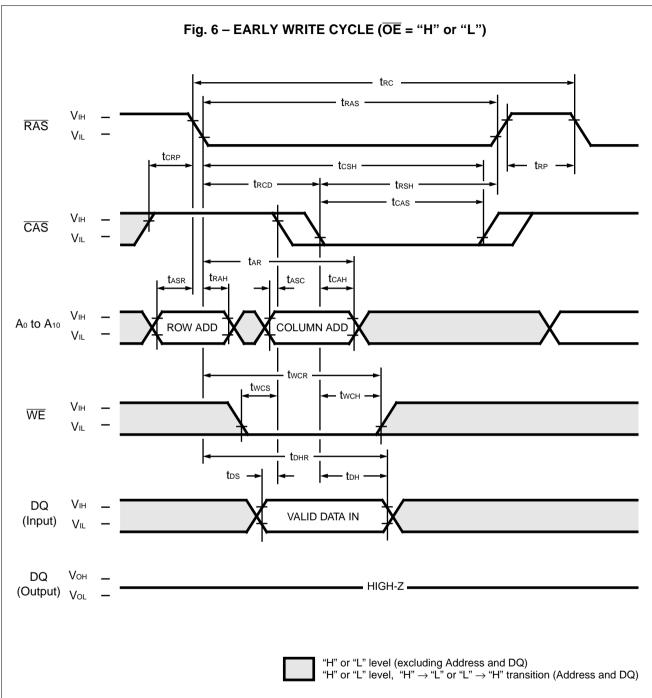
■ FUNCTIONAL TRUTH TABLE

Operation Mode		Clock Input			Addres	ss Input	Input	Data	Refresh	Note
Operation Mode	RAS	CAS	WE	ŌĒ	Row	Column	Input	Output	Keiresii	Note
Standby	Н	Н	Х	Х		_	_	High-Z	_	
Read Cycle	L	L	Н	L	Valid	Valid	_	Valid	Yes.*	trcs ≥ trcs (min)
Write Cycle (Early Write)	L	L	L	Х	Valid	Valid	Valid	High-Z	Yes.*	twcs ≥ twcs (min)
Read-Modify- Write Cycle	L	L	H→L	L→H	Valid	Valid	Valid	Valid	Yes.*	
RAS-only Refresh Cycle	L	Н	Х	Х	Valid	_	_	High-Z	Yes.	
CAS-before- RAS Refresh Cycle	L	L	Х	Х	_	_	_	High-Z	Yes.	tcsr ≥ tcsr (min)
Hidden Refresh Cycle	H→L	L	Н→Х	L	_	_	_	Valid	Yes.	Previous data is kept.

X: "H" or "L"

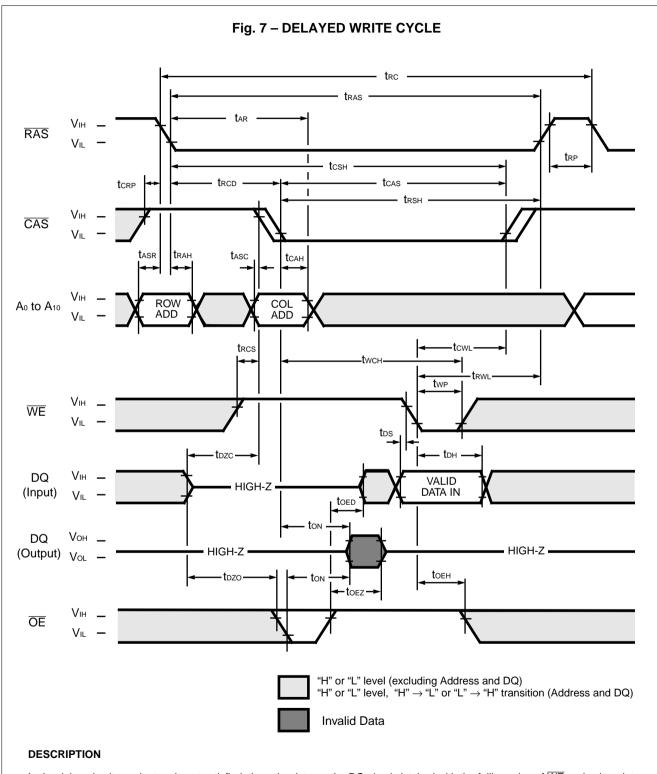
^{*:} It is impossible in Fast Page Mode.

DESCRIPTION

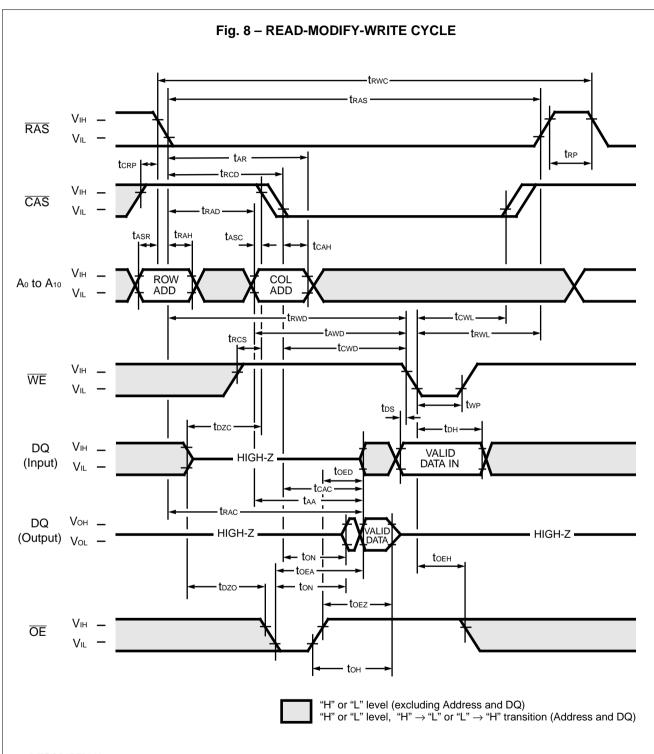

To implement a read operation, a valid address is latched in by the \overline{RAS} and \overline{CAS} address strobes and with \overline{WE} set to a High level and \overline{OE} set to a low level, the output is valid once the memory access time has elapsed. The access time is determined by $\overline{RAS}(t_{RAC})$, $\overline{CAS}(t_{CAC})$, $\overline{OE}(t_{OEA})$ or column addresses (taA) under the following conditions:

If $t_{RCD} > t_{RCD}$ (max), access time = t_{CAC} .

If $t_{RAD} > t_{RAD}$ (max), access time = t_{AA} .

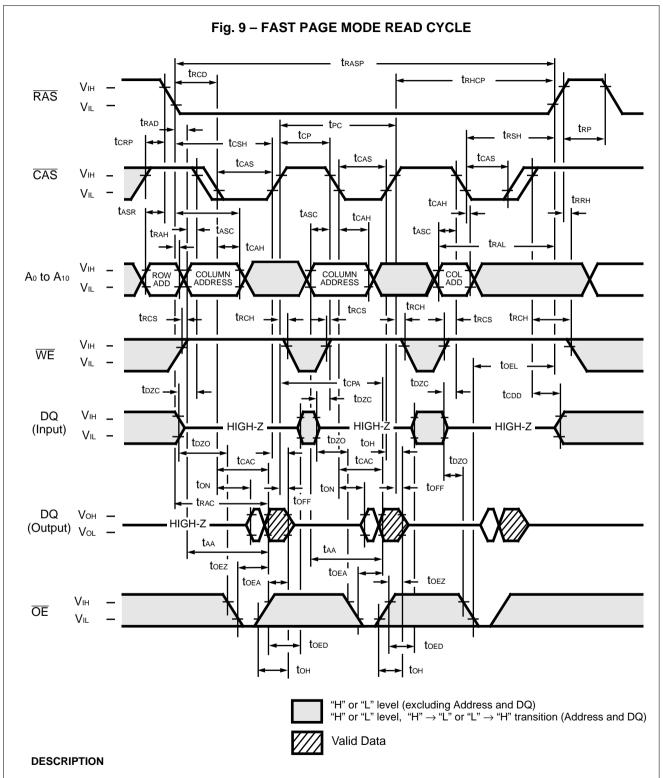

If \overline{OE} is brought Low after trac, tcac, or taa(whichever occurs later), access time = toEA.

However, if either $\overline{\text{CAS}}$ or $\overline{\text{OE}}$ goes High, the output returns to a high-impedance state after toh is satisfied.

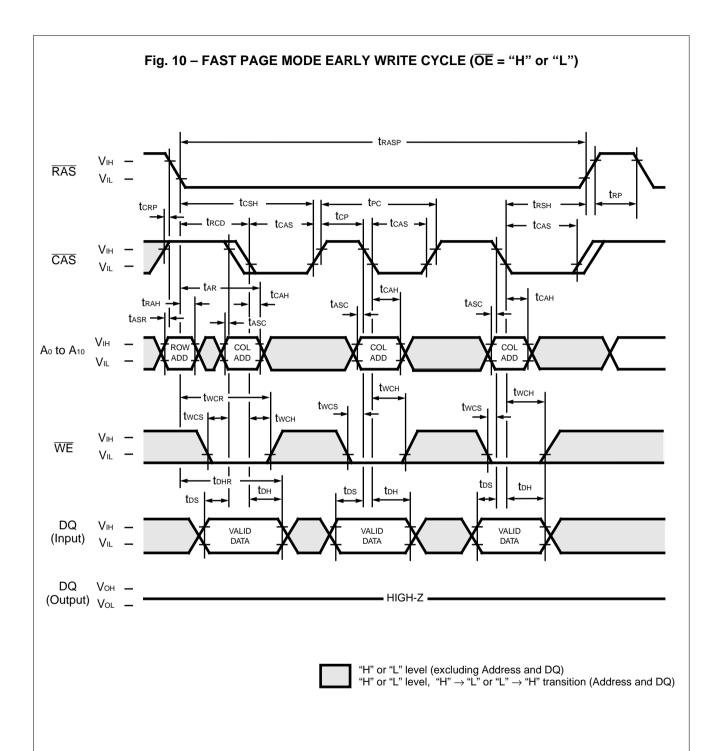


DESCRIPTION

A write cycle is similar to a read cycle except \overline{WE} is set to a Low state and \overline{OE} is an "H" or "L" signal. A write cycle can be implemented in either of three ways – early write, delayed write, or read-modify-write. During all write cycles, timing parameters t_{RWL} , t_{CWL} and t_{RAL} must be satisfied. In the early write cycle shown above t_{WCS} satisfied, data on the DQ pin is latched with the falling edge of \overline{CAS} and written into memory.

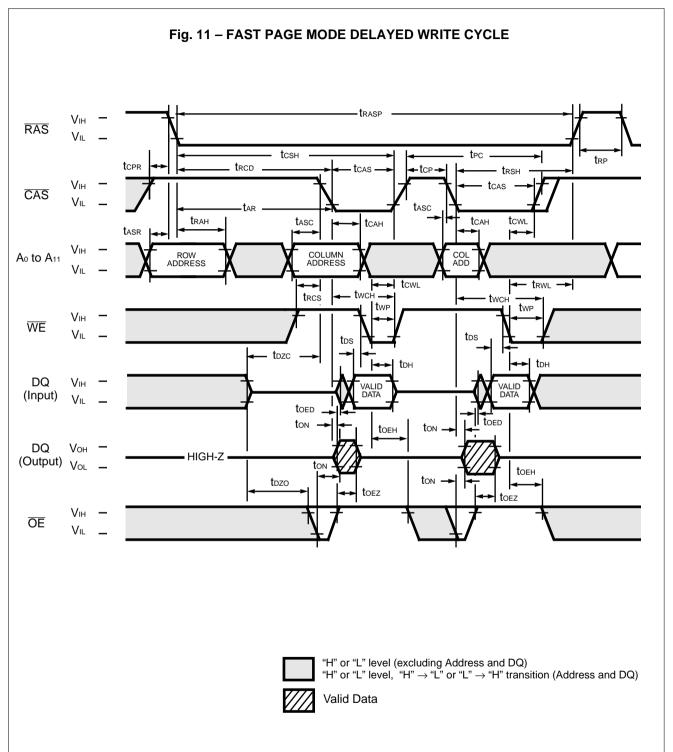


In the delayed write cycle, twcs is not satisfied; thus, the data on the DQ pins is latched with the falling edge of $\overline{\text{WE}}$ and written into memory. The Output Enable ($\overline{\text{OE}}$) signal must be changed from Low to High before $\overline{\text{WE}}$ goes Low (toed + tos).

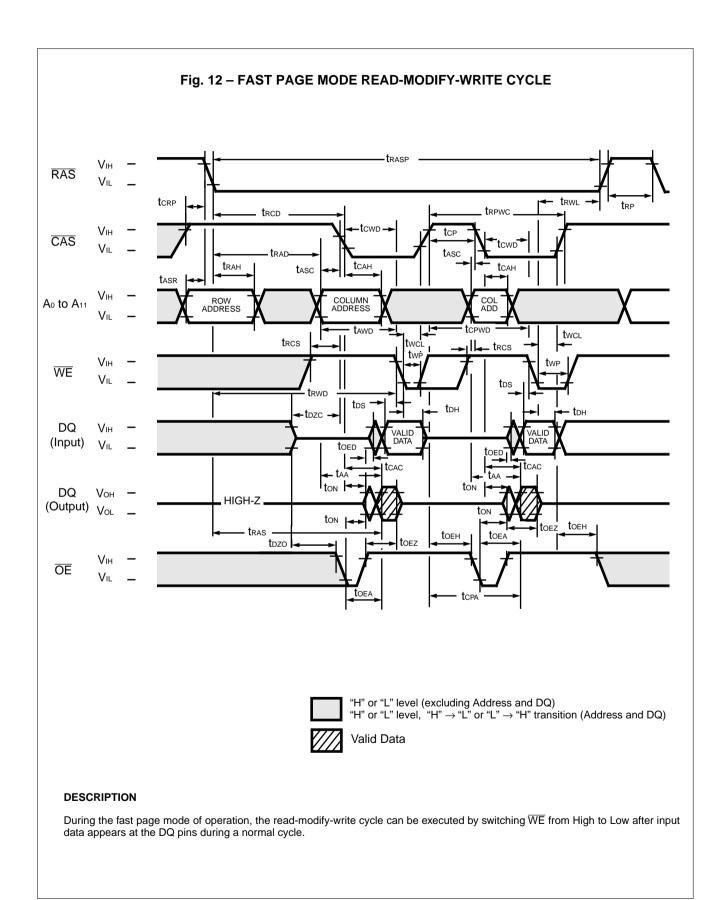


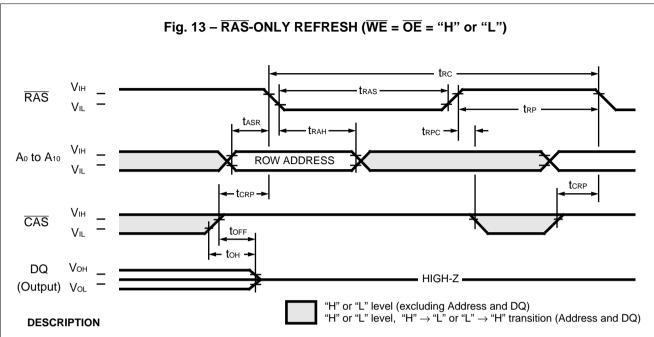
DESCRIPTION

The read-modify-write cycle is executed by changing $\overline{\text{WE}}$ from High to Low after the data appears on the DQ pins. In the read-modify-write cycle, $\overline{\text{OE}}$ must be changed from Low to High after the memory access time.

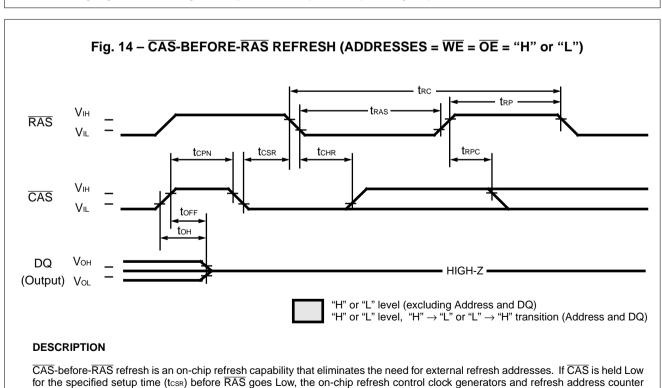


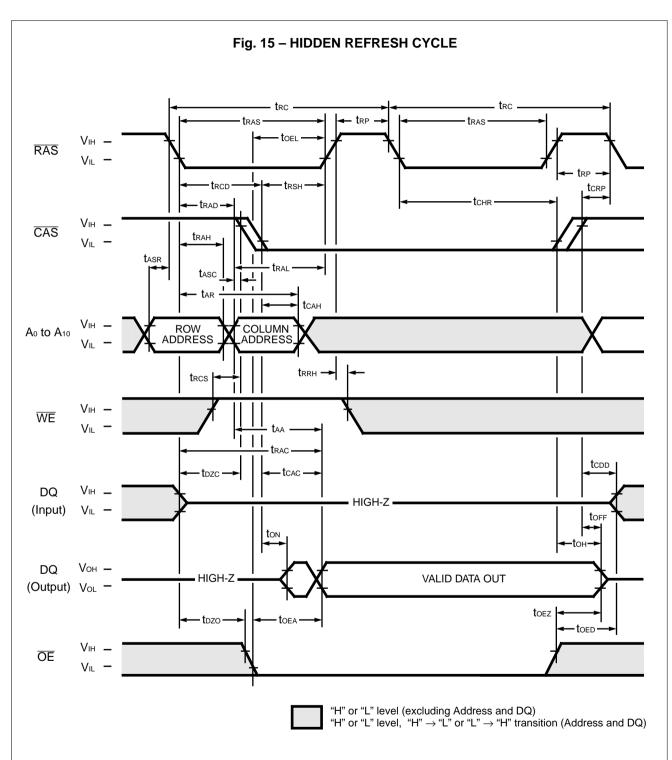
The fast page mode of operation permits faster successive memory operations at multiple column locations of the same row address. This operation is performed by strobing in the row address and maintaining \overline{RAS} at a Low level and \overline{WE} at a High level during all successive memory cycles in which the row address is latched. The address time is determined by tcac, taa, tcpa, or toea, whichever one is the lastest in occuring.


DESCRIPTION

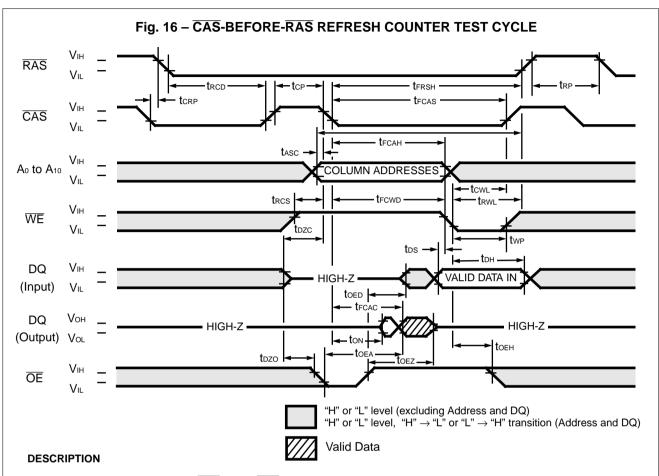

The fast page mode early write cycle is executed in the same manner as the fast page mode read cycle except the states of $\overline{\text{WE}}$ and $\overline{\text{OE}}$ are reversed. Data appearing on the DQ pins is latched on the falling edge of $\overline{\text{CAS}}$ and written into memory. During the fast page mode early write cycle, including the delayed $(\overline{\text{OE}})$ write and read-modify-write cycles, town must be satisfied.

DESCRIPTION


The fast page mode delayed write cycle is executed in the same manner as the fast page mode early write cycle except for the states of $\overline{\text{WE}}$ and $\overline{\text{OE}}$. Input data on the DQ pins are latched on the falling edge of $\overline{\text{WE}}$ and written into memory. In the fast page mode delayed write cycle, $\overline{\text{OE}}$ must be changed from Low to High before $\overline{\text{WE}}$ goes Low (toed + tr + tds).


Refresh of RAM memory cells is accomplished by performing a read, a write, or a read-modify-write cycle at each of 2048 row addresses every 32.8-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh

RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, Dout pins are kept in a high-impedance state.


are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in prep-

aration for the next CAS-before-RAS refresh operation.

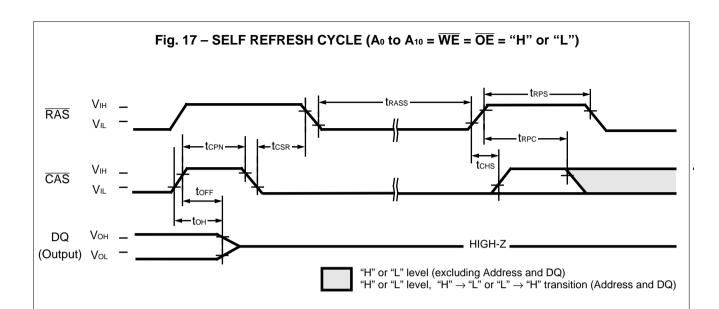
DESCRIPTION

A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the active time of $\overline{\text{CAS}}$ and cycling $\overline{\text{RAS}}$. The refresh row address is provided by the on-chip refresh address counter. This eliminates the need for the external row address that is required by DRAMs that do not have $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh capability.

A special timing sequence using the $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh counter test cycle provides a convenient method to verify the function of $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh cycle $\overline{\text{CAS}}$ makes a transition from High to Low while $\overline{\text{RAS}}$ is held Low, read and write operations are enabled as shown above. Row and column addresses are defined as follows:

Row Address: Bits A₀ through A₁₀ are defined by the on-chip refresh counter.

Column Address: Bits A₀ through A₉ are defined by latching levels on A₀ to A₉ at the second falling edge of CAS.


The CAS-before-RAS Counter Test procedure is as follows:

- 1) Initialize the internal refresh address counter by using 8 RAS-only refresh cycles.
- 2) Use the same column address throughout the test.
- 3) Write "0" to all 2,048 row addresses at the same column address by using normal write cycles.
- 4) Read "0" written in procedure 3) and check; simultaneously write "1" to the same addresses by using CASbefore-RAS refresh counter test (read-modify-write cycles). Repeat this procedure 2,048 times with addresses generated by the internal refresh address counter.
- 5) Read and check data written in procedure 4) by using normal read cycle for all 2,048 memory locations.
- 6) Reverse test data and repeat procedures 3), 4), and 5).

(At recommended operating conditions unless otherwise noted.)

No.	Parameter	Symbol	MB81V178	00A-70/70L	Unit			
140.	i arameter	Syllibol	Min.	Max.	Min.	Max.	Oilit	
90	Access Time from CAS	t FCAC	_	50	_	55	ns	
91	Column Address Hold Time	t FCAH	35	_	35	_	ns	
92	CAS to WE Delay Time	t FCWD	70	_	77	_	ns	
93	CAS Pulse Width	t FCAS	90	_	99	_	ns	
94	RAS Hold Time	t FRSH	90	_	99	_	ns	

Note: Assumes that \overline{CAS} -before- \overline{RAS} refresh counter test cycle only.

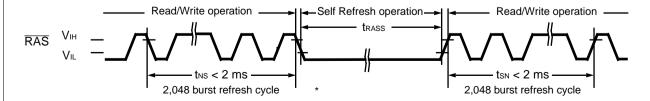
(At recommended operating conditions unless otherwise noted.)

No.	D. Parameter	Symbol	MB81V1780	00A-60/60L	MB81V178	00A-70/70L	Unit
140.	Farameter	Syllibol	Min.	Max.	Min.	Max.	Unit
100	RAS Pulse Width	trass	100	_	100	_	μs
101	RAS Precharge Time	t RPS	110	_	125	_	ns
102	CAS Hold Time	t chs	-50	_	-50	_	ns

Note: Assumes Self Refresh cycle only.

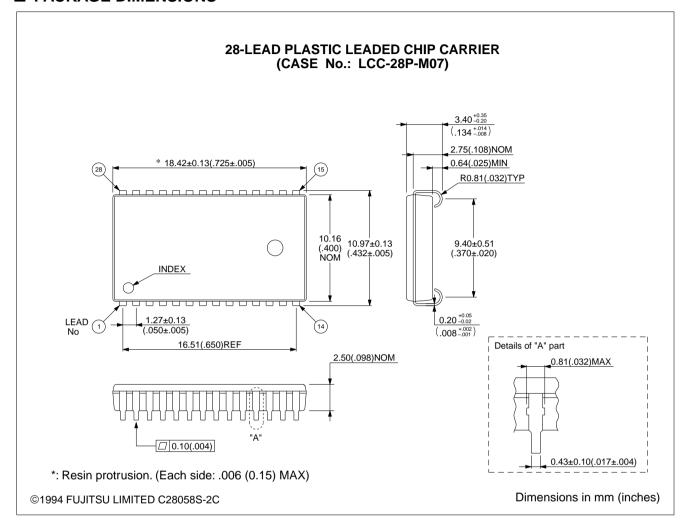
DESCRIPTION

The self refresh cycle provides a refresh operation without external clock and external Address. Self refresh control circuit on chip is operated in the self refresh cycle and refresh operation can be automatically executed using internal refresh address counter. If $\overline{\text{CAS}}$ goes to "L" before $\overline{\text{RAS}}$ goes to "L" (CBR) and the condition of $\overline{\text{CAS}}$ "L" and $\overline{\text{RAS}}$ "L" is kept for term of $\overline{\text{trans}}$ (more than 100 $\overline{\text{ps}}$), the device can enter the self refresh cycle. Following that, refresh operation is automatically executed at fixed intervals using internal refresh address counter during " $\overline{\text{RAS}}$ = L" and " $\overline{\text{CAS}}$ = L".

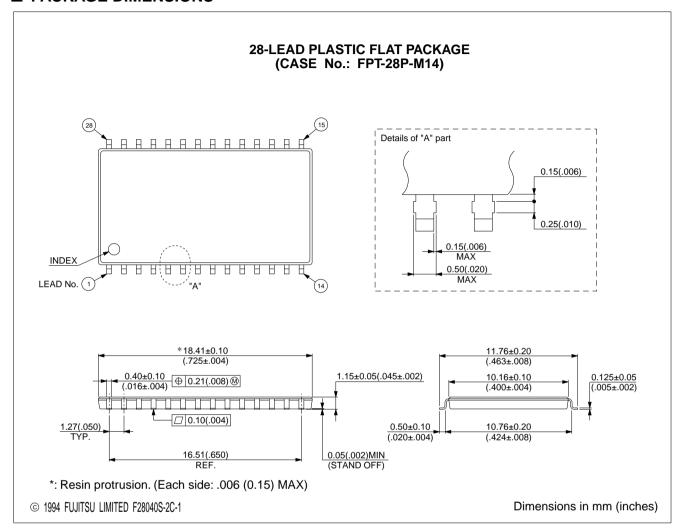

Exit from self refresh cycle is performed by togging RAS and CAS to "H" with specified tcHs min. In this time, RAS must be kept "H" with specified tcHs min.

Using self refresh mode, data can be retained without external CAS signal during system is in standby.

Restriction for Self Refresh operation;


For self refresh operation, the notice below must be considered.

- 1) In the case that distributed CBR refresh are operated between read/write cycles Self Refresh cycles can be executed without special rule if 2,048 cycles of distributed CBR refresh are executed within tree max.
- 2) In the case that burst CBR refresh or distributed burst RAS-only refresh are operated between read/write cycles 2,048 times of burst CBR refresh or 2,048 times of burst RAS-only refresh must be executed before and after Self Refresh cycles.



* Read/Write operation can be performed non refresh time within this or time

■ PACKAGE DIMENSIONS

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan

Tel: (044) 754-3753 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281 0770 Fax: (65) 281 0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9704

© FUJITSU LIMITED Printed in Japan